
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 4

Stages of design
� Problem understanding

• Look at the problem from different angles to discover the
design requirements

� Identify one or more solutions
• Evaluate possible solutions and choose the most appropriate

depending on the designer's experience and available resources

� Describe solution abstractions
• Use graphical, formal or other descriptive notations to

describe the components of the design

� Repeat process for each identified abstraction
until the design is expressed in primitive terms

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 6

From informal to formal design

Informal
design
outline

Informal
design

More
formal
design

Finished
design

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 7

Phases in the design process （例）

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Interface
specification

Component
specification

Data
structure

specification

Algorithm
specification

Requirements
specification

Design activities

Design products

アーキテクチャ設計 概要仕様 インタフェース設計 コンポーネント設計 データ構造設計 アルゴリズム設計

基本設計 詳細設計

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 8

Design phases
� Architectural design Identify sub-systems
� Abstract specification Specify sub-systems
� Interface design Describe sub-system interfaces
� Component design Decompose sub-systems

into components
� Data structure design Design data structures to

hold problem data
� Algorithm design Design algorithms for problem

functions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 9

Hierarchical design structure

�������������
�������������
�������������

���������������
���������������
���������������

��������������
��������������
��������������

���������������
���������������
���������������

���������������
���������������
���������������

System level

Sub-system
level

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 10

Top-down design
� In principle, top-down design involves starting

at the uppermost components in the hierarchy
and working down the hierarchy level by level

� In practice, large systems design is never
truly top-down. Some branches are designed
before others. Designers reuse experience (and
sometimes components) during the design
process

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 11

Design methods
� Structured methods are sets of notations for

expressing a software design and guidelines for
creating a design

� Well-known methods include Structured Design
(Yourdon), and JSD (Jackson Method)

� Can be applied successfully because they support
standard notations and ensure designs follow a
standard form

� Structured methods may be supported with
CASE tools

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 12

Method components
� Many methods support comparable views of a

system
� A data flow view (data flow diagrams) showing

data transformations
� An entity-relation view describing the logical

data structures
� A structural view showing system components

and their interactions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 13

Method deficiencies
� They are guidelines rather than methods in

the mathematical sense. Different designers
create quite different system designs

� They do not help much with the early,
creative phase of design. Rather, they help
the designer to structure and document his
or her design ideas

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 14

Design description
� Graphical notations. Used to display component

relationships
� Program description languages. Based on

programming languages but with more flexibility
to represent abstract concepts

� Informal text. Natural language description.
� All of these notations may be used in large

systems design

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 15

Design strategies
� Functional design （機能指向）

• The system is designed from a functional viewpoint. The
system state is centralised and shared between the functions
operating on that state

� Object-oriented design （オブジェクト指向）
• The system is viewed as a collection of interacting objects.

The system state is de-centralised and each object manages
its own state. Objects may be instances of an object class and
communicate by exchanging methods

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 16

Functional view of a compiler

Analyse
Build

symbol
table

Scan
source

Generate
code

Symbol
table

Output
errors

Source
program

Tokens Tokens Syntax
tree

Object
code

Error
indicator

Symbols

Error
messages

Symbols

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 17

Object-oriented view of a compiler
Source

program
Token
stream

Symbol
table

Syntax
tree Grammar Error

messages

Abstract
code

Object
code

Scan Add

Check Get

Build Print

Generate

Generate

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 18

Mixed-strategy design
� Although it is sometimes suggested that one

approach to design is superior, in practice, an
object-oriented and a functional-oriented
approach to design are complementary

� Good software engineers should select the
most appropriate approach for whatever
sub-system is being designed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 19

Aircraft sub-systems

Instrument
display

Navigation
system

Engine
control

Radar
system

Comms
system

オブジェクトの検討→機能の検討→実装レベルオブジェクトの検討

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 20

High-level objects

� The navigation system
� The radar system
� The communications system
� The instrument display system
� The engine control system
� ...

18

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 21

System functions (sub-system level)
� Display track (radar sub-system)
� Compensate for wind speed (navigation

sub-system)
� Reduce power (engine sub-system)
� Indicate emergency (instrument sub-system)
� Lock onto frequency (communications

sub-system)
� ...

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 22

Low-level objects

� The engine status
� The aircraft position
� The altimeter
� The radio beacon
� ...

20

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 23

Design quality
� Design quality is an elusive （わかりにくい）

concept. Quality depends on specific
organisational priorities

� A 'good' design may be the most efficient, the
cheapest, the most maintainable, the most
reliable, etc.

� The attributes discussed here are concerned
with the maintainability of the design

� Quality characteristics are equally applicable to
function-oriented and object-oriented designs

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 24

Cohesion （凝集度）
または Strength （強度）

� A measure of how well a component 'fits
together'

� A component should implement a single logical
entity or function

� Cohesion is a desirable design component
attribute as when a change has to be made, it is
localised in a single cohesive component

� Various levels of cohesion have been identified

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 25

Cohesion levels

� Coincidental cohesion (weak)
暗号的／偶然
• Parts of a component are simply bundled together

（関係ない機能が同じモジュールに入っている）

� Logical association (weak) 論理的
• Components which perform similar functions are

grouped （例、エラー処理）

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 26

Cohesion levels
� Temporal cohesion (weak) 時間的

• Components which are activated at the same time are
grouped （例、初期設定）

� Procedural cohesion (weak) 手順的
• The elements in a component make up a single

control sequence （一連の制御）

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 27

Cohesion levels

� Communicational cohesion (medium) ？
• All the elements of a component operate on the same

input or produce the same output
 （入力／出力が共通の機能）

� Sequential cohesion (medium) 連絡的
• The output for one part of a component is the input to

another part

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 28

Cohesion levels
� Functional cohesion (strong) 機能的

• Each part of a component is necessary for the
execution of a single function （単一の機能）

� Object cohesion (strong) オブジェクト
• Each operation provides functionality which allows

object attributes to be modified or inspected

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 29

Cohesion as a design attribute
� Not well-defined. Often difficult to classify

cohesion
� Inheriting attributes from super-classes

weakens cohesion
� To understand a component, the super-classes

as well as the component class must be
examined

� Object class browsers assist with this process

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 30

� A measure of the strength of the inter-
connections between system components

� Loose coupling means component changes are
unlikely to affect other components

� Shared variables or control information
exchange lead to tight coupling

� Loose coupling can be achieved by state
decentralisation (as in objects) and component
communication via parameters or message
passing

28

Coupling （結合度）

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 31

Tight coupling

Module A Module B

Module C Module D

Shared data
area

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 32

Loose coupling
Module A

A’s data

Module B

B’s data

Module D

D’s data

Module C

C’s data

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 33

[Myers, 1978]
� Content Coupling （内容結合）

• 他のモジュールの内部を直接参照

� Common Coupling （共通結合）
• 大域データの共有

� External Coupling （外部結合）
• 外部変数としての共有、ただし大域変数とは違いグループ化

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 34

[Myers, 1978]
� Control Coupling （制御結合）

• 他のモジュールを制御する

� Stamp Coupling （スタンプ結合）
• 同じ非大域データを参照

� Data Coupling （データ結合）
• 明確に定義されたデータの受渡し

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 35

� Object-oriented systems are loosely
coupled because there is no shared state
and objects communicate using message
passing

� However, an object class is coupled to its
super-classes. Changes made to the
attributes or operations in a super-class
propagate to all sub-classes. Such changes
must be carefully controlled

Coupling and inheritance

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 36

� Related to several component characteristics
• Cohesion. Can the component be understood on its own?
• Naming. Are meaningful names used?
• Documentation. Is the design well-documented?
• Complexity. Are complex algorithms used?

� Informally, high complexity means many
relationships between different parts of the
design. Hence it is hard to understand

� Most design quality metrics are oriented
towards complexity measurement. They are
of limited use 32

Understandability

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 37

� A design is adaptable if:
• Its components are loosely coupled
• It is well-documented and the documentation is up to date
• There is an obvious correspondence between design levels

(design visibility)
• Each component is a self-contained entity (tightly cohesive)

� To adapt a design, it must be possible to trace the
links between design components so that change
consequences can be analysed

33

Adaptability

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 38

Design traceability

P O R

D

A

B
F

C

D Object interaction
level

Object decomposition
level

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 39

� Inheritance dramatically improves
adaptability. Components may be adapted
without change by deriving a sub-class and
modifying that derived class

� However, as the depth of the inheritance
hierarchy increases, it becomes
increasingly complex. It must be
periodically reviewed and restructured

35

Adaptability and inheritance

