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Stages of design
� Problem understanding

• Look at the problem from different angles to discover the
design requirements

� Identify one or more solutions
• Evaluate possible solutions and choose the most appropriate

depending on the designer's experience and available resources

� Describe solution abstractions
• Use graphical, formal or other descriptive notations to

describe the components of the design

� Repeat process for each identified abstraction
until the design is expressed in primitive terms
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Phases in the design process （例）
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アーキテクチャ設計 概要仕様 インタフェース設計 コンポーネント設計 データ構造設計 アルゴリズム設計

基本設計 詳細設計
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Design phases
� Architectural design  Identify sub-systems
� Abstract specification  Specify sub-systems
� Interface design  Describe sub-system  interfaces
� Component design  Decompose sub-systems

into components
� Data structure design  Design data structures to

hold problem data
� Algorithm design  Design algorithms for problem

functions
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Hierarchical design structure

�������������
�������������
�������������

���������������
���������������
���������������

��������������
��������������
��������������

���������������
���������������
���������������

���������������
���������������
���������������

System level

Sub-system
level

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 10

Top-down design
� In principle, top-down design involves starting

at the uppermost components in the hierarchy
and working down the hierarchy level by level

� In practice, large systems design is never
truly top-down. Some branches are designed
before others. Designers reuse experience (and
sometimes components) during the design
process
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Design methods
� Structured methods are sets of notations for

expressing a software design and guidelines for
creating a design

� Well-known methods include Structured Design
(Yourdon), and JSD (Jackson Method)

� Can be applied successfully because they support
standard notations and ensure designs follow a
standard form

� Structured methods may be supported with
CASE tools
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Method components
� Many methods support comparable views of a

system
� A data flow view (data flow diagrams) showing

data transformations
� An entity-relation view describing the logical

data structures
� A structural view showing system components

and their interactions
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Method deficiencies
� They are guidelines rather than methods in

the mathematical sense. Different designers
create quite different system designs

� They do not help much with the early,
creative phase of design. Rather, they help
the designer to structure and document his
or her design ideas
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Design description
� Graphical notations. Used to display component

relationships
� Program description languages. Based on

programming languages but with more flexibility
to represent abstract concepts

� Informal text. Natural language description.
� All of these notations may be used in large

systems design
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Design strategies
� Functional design （機能指向）

• The system is designed from a functional viewpoint. The
system state is centralised and shared between the functions
operating on that state

� Object-oriented design （オブジェクト指向）
• The system is viewed as a collection of interacting objects.

The system state is de-centralised and each object manages
its own state. Objects may be instances of an object class and
communicate by exchanging methods
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Functional view of a compiler
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Object-oriented view of a compiler
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Mixed-strategy design
� Although it is sometimes suggested that one

approach to design is superior, in practice, an
object-oriented and a functional-oriented
approach to design are complementary

� Good software engineers should select the
most appropriate approach for whatever
sub-system is being designed
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Aircraft sub-systems
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オブジェクトの検討→機能の検討→実装レベルオブジェクトの検討
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High-level objects

� The navigation system
� The radar system
� The communications system
� The instrument display system
� The engine control system
� ...

18
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System functions (sub-system level)
� Display track (radar sub-system)
� Compensate for wind speed (navigation

sub-system)
� Reduce power (engine sub-system)
� Indicate emergency (instrument sub-system)
� Lock onto frequency (communications

sub-system)
� ...
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Low-level objects

� The engine status
� The aircraft position
� The altimeter
� The radio beacon
� ...

20



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 23

Design quality
� Design quality is an elusive （わかりにくい）

concept. Quality depends on specific
organisational priorities

� A 'good' design may be the most efficient, the
cheapest, the most maintainable, the most
reliable, etc.

� The attributes discussed here are concerned
with the maintainability of the design

� Quality characteristics are equally applicable to
function-oriented and object-oriented designs
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Cohesion （凝集度）
または Strength （強度）

� A measure of how well a component 'fits
together'

� A component should implement a single logical
entity or function

� Cohesion is a desirable design component
attribute as when a change has to be made, it is
localised in a single cohesive component

� Various levels of cohesion have been identified
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Cohesion levels

� Coincidental cohesion (weak)
暗号的／偶然
• Parts of a component are simply bundled together

（関係ない機能が同じモジュールに入っている）

� Logical association (weak) 論理的
• Components which perform similar functions are

grouped （例、エラー処理）
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Cohesion levels
� Temporal cohesion (weak) 時間的

• Components which are activated at the same time are
grouped （例、初期設定）

� Procedural cohesion (weak) 手順的
• The elements in a component make up a single

control sequence （一連の制御）
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Cohesion levels

� Communicational cohesion (medium) ？
• All the elements of a component operate on the same

input or produce the same output
 （入力／出力が共通の機能）

� Sequential cohesion (medium) 連絡的
• The output for one part of a component is the input to

another part
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Cohesion levels
� Functional cohesion (strong) 機能的

• Each part of a component is necessary for the
execution of a single function （単一の機能）

� Object cohesion (strong) オブジェクト
• Each operation provides functionality which allows

object attributes to be modified or inspected
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Cohesion as a design attribute
� Not well-defined. Often difficult to classify

cohesion
� Inheriting attributes from super-classes

weakens cohesion
� To understand a component, the super-classes

as well as the component class must be
examined

� Object class browsers assist with this process
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� A measure of the strength of the inter-
connections between system components

� Loose coupling means component changes are
unlikely to affect other components

� Shared variables or control information
exchange lead to tight coupling

� Loose coupling can be achieved by state
decentralisation (as in objects) and component
communication via parameters or message
passing

28

Coupling （結合度）



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 31

Tight coupling
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[Myers, 1978]
� Content Coupling （内容結合）

• 他のモジュールの内部を直接参照

� Common Coupling （共通結合）
• 大域データの共有

� External Coupling （外部結合）
• 外部変数としての共有、ただし大域変数とは違いグループ化
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[Myers, 1978]
� Control Coupling （制御結合）

• 他のモジュールを制御する

� Stamp Coupling （スタンプ結合）
• 同じ非大域データを参照

� Data Coupling （データ結合）
• 明確に定義されたデータの受渡し
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� Object-oriented systems are loosely
coupled because there is no shared state
and objects communicate using message
passing

� However, an object class is coupled to its
super-classes. Changes made to the
attributes or operations in a super-class
propagate to all sub-classes. Such changes
must be carefully controlled

Coupling and inheritance
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� Related to several component characteristics
• Cohesion. Can the component be understood on its own?
• Naming. Are meaningful names used?
• Documentation. Is the design well-documented?
• Complexity. Are complex algorithms used?

� Informally, high complexity means many
relationships between different parts of the
design. Hence it is hard to understand

� Most design quality metrics are oriented
towards complexity measurement. They are
of limited use 32

Understandability
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� A design is adaptable if:
• Its components are loosely coupled
• It is well-documented and the documentation is up to date
• There is an obvious correspondence between design levels

(design visibility)
• Each component is a self-contained entity (tightly cohesive)

� To adapt a design, it must be possible to trace the
links between design components so that change
consequences can be analysed

33

Adaptability

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 38

Design traceability

P O R

D

A

B
F

C

D Object interaction
level

Object decomposition
level



©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 12 Slide 39

� Inheritance dramatically improves
adaptability. Components may be adapted
without change by deriving a sub-class and
modifying that derived class

� However, as the depth of the inheritance
hierarchy increases, it becomes
increasingly complex. It must be
periodically reviewed and restructured

35

Adaptability and inheritance


