
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 1

Object-oriented Design

� Designing systems using self-
contained objects and object
classes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 4

Characteristics of OOD
� Objects are abstractions of real-world or system

entities and manage themselves
� Objects are independent and encapsulate state and

representation information.
� System functionality is expressed in terms of object

services
� Shared data areas are eliminated. Objects

communicate by message passing
� Objects may be distributed and may execute

sequentially or in parallel

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 5

OOD structure

state 3

O3

state 4

O4

state 1

O1

state 6

O6

state 5

O5

state 2

O2

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 6

Advantages of OOD
� Easier maintenance. Objects may be

understood as stand-alone entities
� Objects are appropriate reusable

components
� For some systems, there may be an obvious

mapping from real world entities to system
objects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 7

Object-oriented development
� Object-oriented analysis, design and programming

are related but distinct
� OOA is concerned with developing an object model

of the application domain
� OOD is concerned with developing an object-

oriented system model to implement requirements
� OOP is concerned with realising an OOD using an

OO programming language such as C++

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 9

OO Design method commonality
� The identification of objects, their

attributes and services
� The organisation of objects into an

aggregation hierarchy
� The construction of dynamic object-use

descriptions which show how services are
used

� The specification of object interfaces

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 10

Objects, classes and inheritance
� Objects are entities in a software system

which represent instances of real-world and
system entities

� Object classes are templates for objects.
They may be used to create objects

� Object classes may inherit attributes and
services from other object classes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 11

Objects
An object is an entity which has a state and a defined set
of operations which operate on that state. The state is
represented as a set of object attributes. The operations
associated with the object provide services to other
objects (clients) which request these services when some
computation is required. Objects are created according to
some object class definition. An object class definition
serves as a template for objects. It includes declarations of
all the attributes and services which should be associated
with an object of that class.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 12

Object communication
� Conceptually, objects communicate by message

passing.
� Messages

• The name of the service requested by the calling object.
• Copies of the information required to execute the service

and the name of a holder for the result of the service.

� In practice, messages are often implemented
by procedure calls
• Name = procedure name.
• Information = parameter list.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 13

Message examples

� Call the printing service associated with
lists to print the list L1

List.Print (L1)
� Call the service associated with integer
arrays which finds the maximum value of array
XX. Return the result in Max_value

IntArray.Max (XX, Max_value)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 14

A mail message object class
� Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 15

Interface design of mail message
package Mail is
 type MESSAGE is private ;
 -- Object operations
 procedure Send (M: MESSAGE; Dest: DESTINATION) ;
 procedure Present (M: MESSAGE; D: DEVICE) ;
 procedure File (M: MESSAGE; File: FILENAME) ;
 procedure Print (M: MESSAGE; D: DEVICE) ;

 -- Sender attribute
 function Sender (M: MESSAGE) return MAIL_USER ;
 procedure Put_sender (M: in out MESSAGE; Sender: MAIL_USER) ;
 -- Receiver attribute
 function Receiver (M: MESSAGE) return MAIL_USER ;
 procedure Put_receiver (M: in out MESSAGE; Receiver: MAIL_USER) ;
 -- Access functions and Put operations for other attributes here
 ...
private
 -- The representation of the attributes is concealed by
 -- representing it as an access type. Details are inside the package body
 type MAIL_MESSAGE_RECORD ;
 type MESSAGE is access MAIL_MESSAGE_RECORD ;
end Mail ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 16

Interface design of mail message
class Mail_message {
public:
 Mail_message () ;
 ~Mail_message () ;
 void Send () ;
 void File (char* filename) ;
 void Print (char* printer_name) ;
 void Present (char* device_name) ;
 char* Sender () ;
 void Put_sender (char* S) ;
 char* Receiver () ;
 void Put_receiver (char* R) ;
 // Other access and inspection functions here
private:
 char* sender, receiver, senderaddr, receiveraddr ;
 char* title, text ;
 date datesent, datereceived ;
} ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 17

Object definition
���
���Ada

with Mail ;
-- define an object of type mail message by declaring a
-- variable of the specified abstract data type
Office_memo: Mail.MESSAGE ;
-- Call an operation on mail message
Mail.Print (Office_memo, Laser_printer) ;

���
C++

-- define an object of type Mail_message
Mail_message Office_memo ;

// Call an operation on mail message
Office_memo.Print (“Laser_printer”) ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 18

Inheritance
� Objects are members of classes which

define attribute types and operations
� Classes may be arranged in a class

hierarchy where one class is derived from
an existing class (super-class)

� A sub-class inherits the attributes and
operations from its super class and may
add new methods or attributes of its own

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 19

A class or type hierarchy
� Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 20

Multiple inheritance
� Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 21

Advantages of inheritance

� It is an abstraction mechanism which
may be used to classify entities

� It is a reuse mechanism at both the
design and the programming level

� The inheritance graph is a source of
organisational knowledge about
domains and systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 22

Problems with inheritance
� Object classes are not self-contained. They

cannot be understood without reference to their
super-classes

� Designers have a tendency to reuse the
inheritance graph created during analysis. Can
lead to significant inefficiency

� The inheritance graphs of analysis, design and
implementation have different functions and
should be separately maintained

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 23

Inheritance and OOD
� There are differing views as to whether

inheritance is fundamental to OOD.
• View 1. Identifying the inheritance hierarchy or

network is a fundamental part of object-oriented
design. Obviously this can only be implemented
using an OOPL.

• View 2. Inheritance is a useful implementation
concept which allows reuse of attribute and
operation definitions. Identifying an inheritance
hierarchy at the design stage places unnecessary
restrictions on the implementation.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 24

Object identification
� Identifying objects is the most difficult

part of object oriented design.
� There is no 'magic formula' for object

identification. It relies on the skill,
experience and domain knowledge of
system designers.

� Object identification is an iterative
process. You are unlikely to get it right
first time

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 25

Approaches to identification
� Use a grammatical approach based on a natural

language description of the system (used in Hood
method)

� Base the identification on tangible things in the
application domain

� Use a behavioural approach and identify objects
based on what participates in what behaviour

� Use a scenario-based analysis. Used in the
ObjectOry method

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 26

An office information system
The Office Information Retrieval System (OIRS) is
an automatic file clerk which can file documents
under some name in one or more indexes, retrieve
documents, display and maintain document
indexes, archive documents and destroy
documents. The system is activated by a request
from the user and always returns a message to the
user indicating the success or failure of the request.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 27

Objects and operations
� Nouns in the description give pointers to objects

in the system
� Verbs give pointers to operations associated with

objects
� Approach assumes that the designer has a

common sense knowledge of the application
domain as not all objects and services are likely
to be mentioned in the description

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 28

Preliminary object identification

File
Retrieve
Archive
Destroy

Document

Name

Display
Delete entry
Add entry

Index

Name

Get command
Put message

User

User command

Retrieval
System

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 29

A weather mapping system
� Takes data from several remote weather

stations which perform local data
processing

� The data is transmitted to an area computer
for further processing and integration with
other weather reports

� Weather maps are generated by the area
computer by combining the weather data
with a map database

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 30

Weather system description
A weather data collection system is required to generate
weather maps on a regular basis using data collected from
remote, unattended weather stations. Each weather station
collects meteorological data over a period and produces
summaries of that data. On request, it sends the collected,
processed information to an area computer for further
processing. Data on the air temperature, the ground
temperature, the wind speed and direction, the barometric
pressure and the amount of rainfall is collected by each
weather station.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 31

Weather system description (cont.)

Weather stations transmit their data to the
area computer in response to a request from
that machine. The area computer collates
the collected data and integrates it with
reports from other sources such as satellites
and ships. Using a digitised map database it
then generates a set of local weather maps.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 32

System architecture

Weather
data processor

Data
archive

Map
database

Telecomms
system

Satellite
receiver

Map
printer

Map
display

Manual data
collection

Weather
station

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 33

Principal abstract objects
� Weather station

• Package of instruments which collects data, performs some
processing and transmits the data for further processing

� Map database
• Database of survey information which allows maps to be

generated at different scales

� Weather map
• A representation of an area with superimposed, summarized

weather information

� Weather data
• Used to produce the map and is archived for future processing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 34

Weather station description
A weather station is a package of software controlled
instruments which collects data, performs some data
processing and transmits this data for further processing.
The instruments include air and ground thermometers,
an anemometer, a wind vane, a barometer and a rain
gauge. Data is collected every five minutes.

When a command is issued to transmit the weather data,
the weather station processes and summarises the
collected data. The summarised data is transmitted to
the mapping computer when a request is received.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 35

Weather station objects
� Identified objects

• Air and ground thermometers, anemometer, wind vane,
barometer, rain gauge. The package of instruments may also
be an object

� Identified operations
• Collect data, Perform data processing and Transmit Data

� Identified attributes
• Summarized data

� This description is refined using domain knowledge e.g.
a weather station must have a unique identifier

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 36

Weather station class

Identifier
Weather data
Instrument status

Initialize
Transmit data
Transmit status
Self test
Shut down

Weather station

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 37

Hardware object design
� Hardware objects correspond directly to

sensors or actuators connected to the
system

� They conceal the details of the hardware
control, e.g. buffer address, masking bit
pattern etc.

� Hardware changes can often be introduced
by hardware object re-implementation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 38

Hardware control objects

Test

Wind vane

Direction

Reset
Test

Rain gauge

Rainfall

Test
Calibrate

Barometer

Pressure
Height

Test
Calibrate

Air
thermometer

Temperature

Test
Calibrate

Ground
thermometer

Temperature

Test

Anemometer

Wind speed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 39

Data collected by weather station
� Air and ground temperature

• Maximum, minimum and average

� Wind speed
• Average speed, maximum gust speed

� Wind direction
• Every 5 minutes during collection period

� Pressure
• Average barometric pressure

� Rainfall
• Cumulative rainfall

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 40

Weather data objects

Air temperature data
Ground temperature data
Wind speed data
Wind direction data
Pressure
Rainfall

Make readings
Process data

Weather data

Readings

Maxim um
Minimum
Aver age
Read

Temperature data

Readings

Read
Average

Pressure

Readings

Aver age
Max. gust
Read

Wind speed data

Readings

Wind direction
data

Cumulative

Read

Rainfall

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 41

Weather data
� All weather data can be encapsulated in a

single object. Logically, the weather station
transmits a single object to the area computer

� The attributes of the weather data object are
themselves objects

� The Process_data operation is initiated when
weather information is to be transmitted. It
computes the information required using raw
collected data

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 42

Other weather station objects

Time

Set time

Clock

Status

Test
Shutdown

Instruments

Input buffer
Output buffer

Transmit data
Transmit status

Comms

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 43

Object aggregation hierarchy

Barometer Air
thermometer

Ground
thermometer

Rain gauge Wind vane Anemometer

Weather
data

Instruments Comms

Met.
data

Weather *
station

Map
database

Weather
map

Weather
mapping
system

.

.

Clock

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 44

Static and dynamic system structure
� Object aggregation hierarchy diagrams show

the static system structure. They illustrate
objects and sub-objects. This is NOT the same
as an inheritance hierarchy

� Object-service usage diagrams illustrate how
objects use other objects. They show the
messages passed (procedures called) between
objects

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 45

Object interactions

RainfallGround temp .
data

Air temp.
data

Wind direction
data Pressure Wind speed

data

Cumulative Readings Average Average
Max. gust

Maximum
Minimum
Average

Weather
data

Process
data

Weather
station

Transmit
data

Transmit
data

Comms Comms

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 46

Weather station object interactions
� Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 47

Object interface design
� Concerned with specifying the detail of the

object interfaces. This means defining attribute
types and the signatures and semantics of object
operations

� Representation information should be avoided
� Precise specification is essential so a

programming language description should be
used

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 48

Ada interface design 1
with Weather_data, Instrument_status, Mapping_computer ;
package Weather_station is

type T is private ;
type STATION_IDENTIFIER is STRING (1..6) ;
procedure Initialise (WS: T) ;
procedure Transmit_data (Id: STATION_IDENTIFIER ;

WR: Weather_data.REC ;
Dest: Mapping_computer.ID) ;

procedure Transmit_status (Id: STATION_IDENTIFIER ;
IS: Instrument_status.REC ;
Dest: Mapping_computer.ID) ;

procedure Self_test (WS: T) ;
procedure Shut_down (WS: T) ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 49

Ada interface design 2
-- Access and constructor procedures for object attributes

-- Attribute: Station identifier
function Station_identifier (WS: T) return STATION_IDENTIFIER ;
procedure Put_identifier (WS: in out T ; Id: STATION_IDENTIFIER) ;
-- Attribute: Weather data record
function Weather_data (WS: T) return Weather_data.REC ;
procedure Put_weather_data (WS: in out T ; WR: Weather_data.REC) ;
-- Attribute: Instrument status
procedure Put_instrument_status (WS: in out T; IS: Instrument_status.REC) ;
function Instrument_status (WS: T) return Instrument_status.REC ;

private
type T is record

Id: STATION_IDENTIFIER ;
Weather_data: Weather_data.REC ;
Instrument_status: Instrument_status.REC ;

end record ;
end Weather_station ;

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 50

C++ interface design
� Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 51

Java (少し違います 6th Editionより)
interface WeatherStation {

public void Weather Station();
public void startup();
public void startup(Instrument i);
public void shutDown();
public void shutDown(Instrument i);
public void reportWeather();
public void test();
public void test(Instrument i);
public void calibrate(Instrument i);
public int getID();

} // WeatherStation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 52

Design evolution
� Hiding information inside objects means

that changes made to an object do not
affect other objects in an unpredictable way

� Assume pollution monitoring facilities are
to be added to weather stations. These
sample the air and compute the amount of
different pollutants in the atmosphere

� Pollution readings are transmitted with
weather data

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 53

Changes required
� Add a Pollution record object.
� Add an operation Transmit pollution data to

Weather station. Modify control software to
collect pollution readings

� Add an Air quality sub-object to Pollution
record at the same level as Pressure, Rainfall,
etc.

� Add a hardware object Air quality meter
� Adding pollution data collection does NOT

affect weather data collection in any way

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 54

Pollution monitoring objects

Identifier
Weather data
Pollution data
Instrument status

Initialize
Transmit data
Transmit pollution data
Transmit status
Self test
Shut down

Weather station

NO data
Smoke data
Benzene data

Make readings

Air quality

Readings

Read

NO level

Readings

Read

Smoke level

Readings

Read

Benzene level
Smoke
Nitrous Oxide
Benzene

Test
Calibrate

Air quality meter

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 55

Concurrent objects
� The nature of objects as self-contained

entities make them suitable for
concurrent implementation

� The message-passing model of object
communication can be implemented
directly if objects are running on
separate processors in a distributed
system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 56

Object implementation

� C++ has no built-in concurrency constructs
� Ada’s concurrency constructs (tasks) may

be used to implement concurrent objects
� Task types represent object classes, tasks

represent object instances, task entries
represent object operations.

� Task entries are called like procedures

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 14 Slide 57

Active and passive objects

� Passive objects.
• The object is implemented as a parallel process

(server) with entry points corresponding to object
operations. If no calls are made to it, the object
suspends itself

� Active objects
• Objects are implemented as parallel processes and

the internal object state may be changed by the
object itself and not simply by external calls

