Software Prototyping
(Fak24ED)

0 Animating and demonstrating
system requirements

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 1

Uses of system prototypes

0 The principal use is to help customers and
developers understand the requirements
for the system

0 The prototype may be used for user
training before a final system is delivered

0 The prototype may be used for back-to-
back testing

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 4

;¥) Back-to-Back Testing

0 EREE7

0 2ETHIAFE

0 BEON—avDURTLOHEAE
L8 5T XK

o B#

T4 L—F (degrade: LARTENLNTULN =HEBEDFTLULMBR TEI A
BB R) #f<
TAMEEBHRDOEEL

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 5

Prototyping benefits

0 Misunderstandings between software
users and developers are exposed

0 Missing services may be detected
0 Confusing services may be identified

0 A working system is available early in the
process

0 The prototype may serve as a basis for
deriving a system specification

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 6

Prototyping process

Develop Evaluate
prototype prototype

Prototyping Outline Executable Evaluation
plan definition prototype report

Establish
prototype
objectives

Define
prototype
functionality

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 7

Prototyping objectives
(EEELEMETH)

0 The objective of evolutionary prototyping is
to deliver a working system to end-users.
The development starts with those
requirements which are best understood.

0 The objective of throw-away prototyping is
to validate or derive the system
requirements. The prototyping process starts
with those requirements which are poorly
understood.

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 8

Approaches to prototyping

Evolutionary Delivered
Prototyping System

Outline
Requirements

Throw-away Executable Prototype +
Prototyping System Specification

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 9

Evolutionary prototyping

Must be used for systems where the specification
cannot be developed in advance, e.g., Al systems
and user interface systems

Based on techniques which allow rapid system
iterations

Verification is impossible as there is no
specification. Validation means demonstrating
the adequacy of the system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 10

Evolutionary prototyping

Develop abstract Build prototype Use prototype
specification system system

Deliver
system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 11

Evol. prototyping problems

0 Existing management processes assume a
waterfall model of development

0 Continual change tends to corrupt system
structure so long-term maintenance is expensive

0 Specialist skills are required which may not be
available in all development teams

0 Organisations must accept that the lifetime of
systems developed this way will inevitably be
short

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 12

Throw-away prototyping

0 Used to reduce requirements risk

0 The prototype is developed from an initial
specification, delivered for experiment then
discarded

0 The throw-away prototype should NOT be

considered as a final system
» Some system characteristics may have been left out
» There is no specification for long-term maintenance
» The system will be poorly structured and difficult to maintain

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 13

Throw-away prototyping

Outline Develop Evaluate
requirements prototype prototype

Reusable
components

- Delivered
Develop Validate :
ftware system sottware
S0 system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 14

Prototypes as specifications

0 Some parts of the requirements (e.g.
safety-critical functions) may be
Impossible to prototype and so don’t
appear in the specification

0 An implementation has no legal standing
as a contract

0 Non-functional requirements cannot be
adequately tested in a system prototype

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 15

Prototyping technigues

0 Executable specification languages

0 Very high-level languages

0 Application generators and 4GLs

0 Composition of reusable components

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 18

Executable specification languages

0 The system is specified in a formal language

0 This specification is processed and an
executable system is automatically generated

0 At the end of the process, the specification
may serve as a basis for a re-implementation
of the system

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 19

Problems with this approach

0 Graphical user interfaces cannot be
prototyped

0 Formal specification development is not a
rapid process

0 The executable system is usually slow and
inefficient

0 Executable specifications only allow
functional requirements to be prototyped

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 20

Very high-level languages

0 Languages which include powerful data
management facilities

0 Need a large run-time support system. Not
normally used for large system development

0 Some languages offer excellent Ul development

facilities

0 Some languages have an integrated support
environment whose facilities may be used in the

prototype

©lan Sommerville 1995

Software Engineering, 5th edition. Chapter 8

Slide 21

Prototyping languages

Language Type Application domain
Smalltalk Object-oriented Interactive systems
LOOPS Wide spectrum Interactive systems
Prolog Logic Symbolic processing
Lisp List-based Symbolic processing
Miranda Functional Symbolic processing
SETL Set-based Symbolic processing
APL Mathematical Scientific systems
4GLs Database Business DP
CASE tools Graphical Business DP

©lan Sommerville 1995

Software Engineering, 5th edition. Chapter 8

Slide 22

Smalltalk

Very powerful system for prototyping
Interactive systems

Object-oriented language so systems are
resilient to change

The Smalltalk environment objects are
available to the prototype developer

The system includes support software such as
graphical user interface generation tools

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 23

Fourth-generation languages

Domain specific languages for business systems
based around a database management system

Normally include a database query language, a
screen generator, a report generator and a
spreadsheet

May be integrated with a CASE toolset

Cost-effective for small to medium sized
business systems

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 24

AGLs

DB query Screen Spreadsheet Report
language Generator generator

Database Management System

Fourth-generation language

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 25

Prototyping with reuse

0 The system is prototyped by ‘gluing’
together existing components

0 Likely to become more widely used as
libraries of objects become available

0 Needs a composition language such as a
Unix shell language

0 Visual Basic is largely based on this
approach

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 26

Reusable component composition

Reusable
component
repository

Component

composition |

system

Executable
prototype

' !

Component <> System
catalogue Specification

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 27

User interface prototyping

0 It is impossible to pre-specify the look and feel
of a user interface in an effective way.
prototyping is essential

0 Ul development consumes an increasing part of
overall system development costs

0 Prototyping may use very high level languages
such as Smalltalk or Lisp

0 User interface generators may be used to ‘draw
the interface and simulate its functionality

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 28

User interface management system

User User interface
display

Application
commands

commands
@(—» User interface jef—m

User interface
management
system

-

Application

AN

Display
specification

UIMS: 775 —3 0 UMD 72 B

Application
command
specification

©lan Sommerville 1995 Software Engineering, 5th edition. Chapter 8

Slide 29

