Configuration management

& Managing the products of
system change

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 1

Objectives

¢ To explain the importance of software
configuration management (CM)

¢ To describe CM planning

¢ To describe key CM activities namely change
management, version management and system
building

¢ To discuss the use of some CM tools

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 2

Topics covered

¢ Configuration management planning
¢ Change management

¢ Version and release management

¢ System building

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 3

Configuration management

¢ New versions of software systems are created
as they evolve
« For different machines/OS
» Offering different functionality

+ Tailored for particular user requirements
¢ CM is concerned with managing evolving
software systems

+ System change is a team activity

+ (M aims to control the costs and effort involved in
making changes to a system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 4

Configuration management

¢ Involves the development and application
of procedures and standards to manage an
evolving software product

& May be seen as part of a more general
quality management process

¢ When released to CM, software systems
are sometimes called baselines as they are
a starting point for further development

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 5

System families

PC
version
DEC
version
Sun
version

Mainframe
version
Workstation
version

VMS
version

Unix
version

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 6

CM standards

¢ (CM should always be based on a set of standards
which are applied within an organisation

¢ Standards should define how items are identified,
how changes are controlled and how new
versions are managed

¢ Standards may be based on external CM
standards (e.g. IEEE standard for CM)

¢ Existing standards are based on a waterfall
process model - new standards are needed for

evolutionary development

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33

Slide 7

Configuration management planning

¢ All products of the software process may
have to be managed

Specifications
Designs
Programs
Test data

User manuals

& Thousands of separate documents are
generated for a large software system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33

Slide 8

CM planning

+ Starts during the early phases of the project

¢ Must define the documents or document
classes which are to be managed (Formal
documents)

& Documents which might be required for
future system maintenance should be
identified and specified as managed
documents

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 9

The CM plan

& Defines the types of documents to be
managed and a document naming scheme

¢ Defines who takes responsibility for the
CM procedures and creation of baselines

Defines policies for change control and
version management

¢ Defines the CM records which must be
maintained

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 10

The CM plan

¢ Describes the tools which should be used to
assist the CM process and any limitations
on their use

¢ Defines the process of tool use

¢ Defines the CM database used to record
configuration information

& May include information such as the CM of
external software, process auditing, etc.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 11

Configuration item identification

¢ Large projects typically produce thousands of
documents which must be uniquely identified

¢ Some of these documents must be maintained
for the lifetime of the software

¢ Document naming scheme should be defined so
that related documents have related names.

¢ A hierarchical scheme with multi-level names
is probably the most flexible approach

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 12

Configuration hierarchy

PCL-TOOLS
COMPILE BIND EDIT MAKE-GEN
S ST
FORM STRUCTURES HELP
T~ P
DISPLAY QUERY
S
FORM-SPECS AST-INTERFACE FORM-IO
T~ /I\ T~
OBJECTS CODE TESTS

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 13

CM planning database

¢ All CM information should be maintained in a CM
database

¢ Should allow queries about configurations to be
answered
* Who has a particular system version?
* What platform is required for a particular version?
* What versions are affected by a change to component X?
» How many reported faults in version T?

¢ (CM database should preferably be linked to the
software being managed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 14

CM database implementation

¢ May be part of an integrated environment to
support software development. The CM database
and the managed documents are all maintained
on the same system

¢ CASE tools may be integrated with this so that
there is a close relationship between the CASE
tools and the CM tools

¢ More commonly, the CM database 1s maintained
separately as this is cheaper and more flexible

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 15

Change management

& Software systems are subject to continual
change requests
» From users
» From developers

* From market forces

¢ Change management is concerned with
keeping managing of these changes and
ensuring that they are implemented in the
most cost-effective way

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 16

The change management process

Request change by completing a change request form
Analyze change request
if change is valid then
Assess how change might be implemented
Assess change cost
Submit request to change control board
if change is accepted then
repeat
make changes to software
submit changed software for quality approval
until software quality is adequate
create new system version
else
reject change request
else
reject change request

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 17

Change request form

¢ Definition of change request form is part of the
CM planning process

¢ Records change required, suggestor of change,
reason why change was suggested and urgency
of change(from requestor of the change)

¢ Records change evaluation, impact analysis,
change cost and recommendations (System
maintenance staff)

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 18

Change request form

¢ Replace with portrait slide

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 19

Change tracking tools

¢ A major problem in change management is
tracking change status

¢ Change tracking tools keep track the status
of each change request and automatically
ensure that change requests are sent to the
right people at the right time.

¢ Integrated with E-mail systems allowing
electronic change request distribution

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 20

Change control board

¢ Changes should be reviewed by an external

group who decide whether or not they are cost-
effective from a strategic and organizational
viewpoint rather than a technical viewpoint

Should be independent of project responsible
for system. The group is sometimes called a
change control board

May include representatives from client and
contractor staff

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 21

Derivation history

*

*

Record of changes applied to a document or
code component

Should record, in outline, the change made, the
rationale for the change, who made the change
and when it was implemented

May be included as a comment in code. If a
standard prologue style is used for the
derivation history, tools can process this
automatically

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 22

Example - derivation history

// PROTEUS project (ESPRIT 6087)

//

// PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE
//

// Object: PCL-Tool-Desc

// Author: G. Dean

// Creation date: 10th November 1994

//

// © Lancaster University 1994

//

// Modification history
// Version Modifier Date Change Reason
// 1.0 J. Jones 1/12/94 Add header Submitted to CM
/1.1 G. Dean 9/4/95 New field Change
// req. 07/95
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 23

Version and release management

Invent identification scheme for system
versions

& Plan when new system version is to be
produced

¢ Ensure that version management
procedures and tools are properly applied

¢ Plan and distribute new system releases

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 24

Versions/variants/releases

¢ Jersion An instance of a system which is
functionally distinct in some way from other
system instances

& JVariant An instance of a system which is
functionally 1dentical but non-functionally
distinct from other instances of a system

¢ Release An instance of a system which is
distributed to users outside of the development
team

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 25

System releases

¢ Not just a set of executable programs

¢ May also include

+ Configuration files defining how the release is configured for
a particular installation

» data files needed for system operation

» an installation program or shell script to install the system on
target hardware

+ electronic and paper documentation
¢ Systems may be released on magnetic tape,
floppy disk or CD-ROM

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 26

Version i1dentification

¢ Simple naming scheme uses a linear
derivation e.g. V1, V1.1, V1.2, V2.1, V2.2 etc.

¢ Actual derivation structure is a tree or a
network rather than a sequence

¢ Names are not meaningful.
¢ Hierarchical naming scheme may be better

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 27

Version derivation structure

V1.1b |3 V1.1.1

V1.0 V12 V2.0 | gl V2.1 V2.2

+
i

N

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 28

Attributed version identification

¢ Attributes can be associated with a version
with the combination of attributes identifying
that version

¢ Examples of attributes are Date, Creator,
Programming Language, Customer, Status etc.

¢ More flexible than an explicit naming scheme
for version retrieval; Can cause problems with
uniqueness

¢ Needs an associated name for easy reference

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 29

Release management

¢ Releases must incorporate changes
forced on the system by errors discovered
by users and by hardware changes

¢ They must also incorporate new system
functionality

¢ Release planning is concerned with when
to issue a system version as a release

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 30

Lehman’s fifth law

¢ The incremental system change which can be
incorporated in each release of the system is
approximately constant

¢ [ftoo many new features are included at the
same time as error repairs, the cost of
producing a new release is significantly
increased

¢ If arelease has many changes incorporated, it
must be followed by a further release fixing
problems in the first release

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 31

System release strategy

Enhanced Repair Repair Enhanced Repair
release P release P elease > release P elease

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 32

Release problems
¢ Customer may not want a new release of the
system

» They may be happy with their current system as the
new version may provide unwanted functionality
(e.g. Word 6)

¢ Release management must not assume that
all previous releases have been accepted.
All files required for a release should be re-
created when a new release is installed

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 33

Version management tools

¢ Version and release identification

+ Systems assign identifiers automatically when a new version
is submitted to the system

¢ Controlled change.

* Only one version at a time may be checked out for change.
Parallel working on different versions

+ Storage management.

+ System stores the differences between versions rather than all
the version code

¢ Change history recording

» Record reasons for version creation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 34

RCS - Revision Control System

¢ RCS i1s arelatively old tool but still widely used.

¢ Minimizes the disk requirements by only storing
differences (deltas) from a base version

¢ Applies deltas to the latest release to re-create
carlier system versions

¢ Allows any named version or release to be

generated
¢ Allows independent development of different
releases
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 35
Deltas in RCS
Version Version Version Version
1.0 1.1 1.2 1.3

/>N

/o

/o\

®

©Jan Sommerville 1995

Software Engineering, 5th edition. Chapter 33

Crationdate

Slide 36

Parallel development in RCS

Version ! Version ! Version ! Version

1.0 - < 2 < 3

Version
1.4

RELEASE 1 i

> =

Version
2.1

Version
2.0

RELEASE 2

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 37

RCS limitations

¢ Designed as a code control system therefore
intended for use with ASCII text

¢ Cannot be used to manage object code or other
documents with non-ASCII representations (€.g.
multimedia files)

¢ Text-based user interface. Version browsing is
difficult

¢ Version retrieval based on the name rather than
the version attributes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 38

System building

& Involves taking all system components
and combining them into a single
executable system

¢ Different systems are built from different
component combinations

& May take several days for large systems
if all components are compiled and
linked at the same time

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 39

System building problems

¢ Do the build instructions include all required
components?

When there are many hundreds of components making up a system, it is
casy to miss one out. This should normally be detected by the linker

+ s the appropriate component version
specified?

A more significant problem. A system built with the wrong version may
work initially but fail after delivery

¢ Are all data files available?

The build should not rely on 'standard' data files. Standards vary from place
to place

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 40

System building problems

¢ Are data file references within components

correct?

Embedding absolute names in code almost always causes
problems as naming conventions differ from place to place

¢ s the system being built for the right platform

Sometimes must build for a specific OS version or hardware
configuration

¢ s the right version of the compiler and other

software tools specified?

Different compiler versions may actually generate different code and the
compiled component will exhibit different behaviour

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 41

System representation

¢ Systems are normally represented for building by
specifying the file name to be processed by
building tools. Dependencies between these are
described to the building tools

¢ Mistakes can be made as users lose track of
which objects are stored in which files

¢ A system modelling language addresses this
problem by using a logical rather than a physical
system representation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 42

System building with Make

¢ Most widely used build tool on the Unix system
is MAKE. Comparable tools are available on
other systems

& User specifies component dependencies and
MAKE automatically forces recompilation of
required files when it detects that the source code
has been changed after the object code was
created

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 43

Component dependencies

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 44

Make problems

¢ Based on a physical rather than a logical
model of dependencies

¢ Dependency specifications (Makefiles)
quickly become large, complex, hard to
understand and expensive to maintain

¢ MAKE uses a simple model of change
based on file update times. Source code
changes NEED not require re-compilation

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 45

Make problems

¢ MAKE does not (easily) allow versions of
tools such as the compiler to be specified

¢ Not tightly linked to version management
tools such as RCS. Manual intervention is
usually needed to check out source code from
a version management system for building

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 46

System modelling in PCL

4

PCL i1s a system modelling language

4

Systems are represented as families with stable and
variable parts

Attribute-based component identification
Component interface definition

Composition structure of components

* & o o

Physical structure - mapping of logical component to
physical files

4

Component relationships e.g. ‘requires’ and
‘implemented as’

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 47

Logical system model

family print-server

attributes
multiple-paper-types: boolean ;
end
interface
print => print-file ;
display-queue => show-print-queue ;
dequeue => delete-print-job ;
select-printer => set-printer ;
select-paper-type =>
if multiple-paper-types then
set-input-tray endif ;
end

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 48

Logical system model

parts
PRINT => printer-controller ;
QUEUE => queue-manager
select-paper-type =>
if multiple-paper-types then
set-input-tray endif ;
end
physical
source => “print_server” repository “/ust/src” ;
EXECUTABLE => Print-man binary
“/usr/utils/bin” ;
end
end // print-server

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 49

PCL system building

PCL system

v Make file
description

(Makegen)_,
¢ /7 Y

Verdon - -
PCL-bind PCL Unix Derived
()_) build model management Make system
sysem

PCL version
description

©Jan Sommerville 1995

Repodtory

Check-out
files for building

Software Engineering, 5th edition. Chapter 33

Slide 50

System building from PCL

¢ Variability is removed from the PCL
description by PCL-bind

¢ The system model is analysed and
dependencies are identified. A make file 1s
generated

The required versions of components are
identified by their attributes and checked out
automatically from RCS

¢ Make is called to build the system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 51

Parallel system building

¢ DSEE is an example of a system which
supports networked building
 Parallel building of different system versions
» Parallel compilation on different network nodes
» Integrated source code control and system building

» Configuration identification based on a system model
called a configuration thread

* Derived object management where all built objects are
maintained until they are needed or space is exhausted

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 52

DSEE characteristics

¢ No automatic recompilation of object code after a
source code change (unlike Make)

¢ Only recompile a component when a demand is
made for the object code

¢ Supports attribute-based version identification
through 'configuration threads'

¢ Object code related to source code through
attributes. Compiled objects have the same
attribute set as their sources

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 53

Parallel building

¢ Generally, on a network of workstations, some
are idle at any one time

¢ DSEE finds an idle machine and builds
component on that machine

¢ Leads to performance improvement of several
hundred %

¢ System works well when a network is
composed of common platforms so
components are interchangable.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 54

Network-oriented building

Parallel compilaion

WS WS WS WS

by 4

Workstation network

Source code Compiled object
code

for compilation

Object pool

V2233 v1234
v2234 v1233

i v2234
v2233

Source code |
versions

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 55

Configuration threads

¢ Identify the version to be built by specifying
its attributes (e.g. Build the version with
identifier attribute, R3; build the version with
status attribute 'beta test' etc.)

¢ Identify the version of the compiler and
support tools along with its parameters which
is to be used in building a system version

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 56

Integrated CM databases

+ Integrate information about the configuration
with the entities which are themselves being
managed.

¢ Generally based on ERA semantic model
where entities participate in relationships and
have associated attributes.

¢ Include process information e€.g.. an entity
attribute may have a value which is a process
description showing how that entity was created.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 57

CM support with an integrated DB

¢ CM tools may be implemented using database
query and browsing facilities

¢ Using process information, other tools such as
editors/compilers etc. can be integrated and can
automate version creation

¢ Information dissemination re versions and
changes can be incorporated in the process
information

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 58

Database-oriented CM tools

*

Rely on a powerful semantic or object-oriented
database

Store both process and product information

Provide an integrated set of tools for
configuration management

Integrated with other tools through the
database

Graphical user interface
Still research prototypes

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 59

Key points

*

¢
¢

CM is the management of system change to
software products

Effective CM is essential in large software projects

CM activities include CM planning, change
management, system building, and version and
release management

A formal document naming scheme should be
established and documents should be
managed in a database

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 60

Key points

¢ System releases should be phased with releases
fixing problems interleaved with releases offering
new functionality

¢ System building involves assembling components
into a system. It 1s always supported by system
building tools such as Make

¢ Integrated CM tools such as DSEE combine
support for system building and version
management

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 33 Slide 61

