
©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 1

Software Prototyping
（プロトタイピング）

◆ Animating and demonstrating
system requirements

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 4

Uses of system prototypes

◆ The principal use is to help customers and
developers understand the requirements
for the system

◆ The prototype may be used for user
training before a final system is delivered

◆ The prototype may be used for back-to-
back testing

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 5

注）Back-to-Back Testing
◆ 訳語？

◆ 22章で説明予定
◆ 複数のバージョンのシステムの出力を
比較するテスト

◆ 目的
• デグレード（degrade: 以前動いていた機能が新しい版で動か
なくなる現象）を防ぐ

• テスト作業自体の簡便化

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 6

Prototyping benefits
◆ Misunderstandings between software

users and developers are exposed
◆ Missing services may be detected
◆ Confusing services may be identified
◆ A working system is available early in the

process
◆ The prototype may serve as a basis for

deriving a system specification

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 7

Prototyping process

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 8

Prototyping objectives
（発展型と使い捨て型）

◆ The objective of evolutionary prototyping is
to deliver a working system to end-users.
The development starts with those
requirements which are best understood.

◆ The objective of throw-away prototyping is
to validate or derive the system
requirements. The prototyping process starts
with those requirements which are poorly
understood.

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 9

Approaches to prototyping

Evolutionary
Prototyping

Throw-away
Prototyping

Delivered
System

Executable Prototype +
System Specification

Outline
Requirements

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 10

Evolutionary prototyping
◆ Must be used for systems where the specification

cannot be developed in advance, e.g., AI systems
and user interface systems

◆ Based on techniques which allow rapid system
iterations

◆ Verification is impossible as there is no
specification. Validation means demonstrating
the adequacy of the system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 11

Evolutionary prototyping

Build prototype
system

Develop abstract
specification

Use prototype
system

Deliver
system

System
adequate?

YES

NO

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 12

Evol. prototyping problems
◆ Existing management processes assume a

waterfall model of development
◆ Continual change tends to corrupt system

structure so long-term maintenance is expensive
◆ Specialist skills are required which may not be

available in all development teams
◆ Organisations must accept that the lifetime of

systems developed this way will inevitably be
short

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 13

Throw-away prototyping
◆ Used to reduce requirements risk
◆ The prototype is developed from an initial

specification, delivered for experiment then
discarded

◆ The throw-away prototype should NOT be
considered as a final system
• Some system characteristics may have been left out
• There is no specification for long-term maintenance
• The system will be poorly structured and difficult to maintain

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 14

Throw-away prototyping

Outline
requirements

Develop
prototype

Evaluate
prototype

Specify
system

Develop
software

Validate
system

Delivered
software
system

Reusable
components

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 15

Prototypes as specifications
◆ Some parts of the requirements (e.g.

safety-critical functions) may be
impossible to prototype and so don’t
appear in the specification

◆ An implementation has no legal standing
as a contract

◆ Non-functional requirements cannot be
adequately tested in a system prototype

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 18

Prototyping techniques

◆ Executable specification languages
◆ Very high-level languages
◆ Application generators and 4GLs
◆ Composition of reusable components

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 19

Executable specification languages

◆ The system is specified in a formal language
◆ This specification is processed and an

executable system is automatically generated
◆ At the end of the process, the specification

may serve as a basis for a re-implementation
of the system

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 20

Problems with this approach
◆ Graphical user interfaces cannot be

prototyped
◆ Formal specification development is not a

rapid process
◆ The executable system is usually slow and

inefficient
◆ Executable specifications only allow

functional requirements to be prototyped

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 21

Very high-level languages
◆ Languages which include powerful data

management facilities
◆ Need a large run-time support system. Not

normally used for large system development
◆ Some languages offer excellent UI development

facilities
◆ Some languages have an integrated support

environment whose facilities may be used in the
prototype

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 22

Prototyping languages

Language Type Application domain
Smalltalk Object-oriented Interactive systems
LOOPS Wide spectrum Interactive systems
Prolog Logic Symbolic processing
Lisp List-based Symbolic processing
Miranda Functional Symbolic processing
SETL Set-based Symbolic processing
APL Mathematical Scientific systems
4GLs Database Business DP
CASE tools Graphical Business DP

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 23

Smalltalk
◆ Very powerful system for prototyping

interactive systems
◆ Object-oriented language so systems are

resilient to change
◆ The Smalltalk environment objects are

available to the prototype developer
◆ The system includes support software such as

graphical user interface generation tools

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 24

Fourth-generation languages
◆ Domain specific languages for business systems

based around a database management system
◆ Normally include a database query language, a

screen generator, a report generator and a
spreadsheet

◆ May be integrated with a CASE toolset
◆ Cost-effective for small to medium sized

business systems

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 25

4GLs

DB query
language

Screen
Generator Spreadsheet Report

generator

Database Management System

Fourth-generation language

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 26

Prototyping with reuse
◆ The system is prototyped by ‘gluing’

together existing components
◆ Likely to become more widely used as

libraries of objects become available
◆ Needs a composition language such as a

Unix shell language
◆ Visual Basic is largely based on this

approach

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 27

Reusable component composition

Component
composition

system

Executable
prototype

Reusable
component
repository

System
Specification

Component
catalogue

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 28

User interface prototyping
◆ It is impossible to pre-specify the look and feel

of a user interface in an effective way.
prototyping is essential

◆ UI development consumes an increasing part of
overall system development costs

◆ Prototyping may use very high level languages
such as Smalltalk or Lisp

◆ User interface generators may be used to ‘draw’
the interface and simulate its functionality

©Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 8 Slide 29

User interface management system

User interface
management

system
ApplicationUser interface

Application
command

specification

Display
specification

User
commands

User interface
display

Application
commands

User

UIMS: アプリケーションとＵＩの分離

